GEOMETRY AND COMBINATORICS OF MATROIDS
 RUBY ORTIZ
 MENTOR: DR. NICOLA TARASCA

CHROMATIC POLYNOMIALS OF A GRAPH

- The Proper q-coloring
- When no two adjacent vertices have the same color
- Chromatic Polynomial
- The number of ways a graph's vertices can be colored so that the adjacent vertices are different colors

$$
X_{G}(q)=\text { the number of proper } q-\text { colorings }
$$ $q=$ the number of colors

CHROMATIC POLYNOMIALS OF A GRAPH

- This idea stems from the Four Color Theorem
- Whitney [1932] found that the chromatic polynomial is indeed a polynomial.

$$
\text { - } X_{G}(q) / q=a_{0}(G) q^{d}-a_{1}(G) q^{d-1}+\cdots+(-1)^{d} a_{d}(G)
$$

- Which was then computed by deletion-contraction relation by Hoggar [1974]

$$
\text { - } X_{G}(q)=X_{G \backslash e}(q)-X_{G / e}(q)
$$

$$
q^{4}-4 q^{3}+6 q^{2}-3 q
$$

$q(q-1)(q-2)$

GOALS

- In the present, I am proving how the graph of a deleted edge's chromatic polynomial minus the graph of a contracting edge's chromatic polynomial calculates the chromatic polynomial of the graph.
- In the future, I am using this special case to understand the Theorem of Matroids and get a definition for Matroids.
- The end goal is to proof Rota's unimodality conjecture: "If $w_{k}(M)$ is the number of rank k flats of a rank d matroid M, then the sequence $w_{0}(M), \ldots, w_{d}(M)$ is unimodal."

ACKNOWLEDGMENTS

- Thanks to MAA/NREUP program through the NSF grant DMS-1652506 for the support and funding this research.
- Thanks to Dr. Nicola Tarasca for the support in this research.
- Thanks to DIMACS and Dr. Lazaros Gallos for giving me this opportunity.

CITATIONS

- Huh, J. (2018). Combinatorial Applications Of The Hodge-Riemann Relations. Not yet published.

